Como la transformada de Laplace se define en términos de una integral impropia que puede ser divergente, existen funciones para las cuales no existe dicha transformada, incluso hay funciones discontinuas, como la del ejemplo anterior, que pueden tener transformada; entonces, ¿ bajo qué condiciones una funciones tienen transformada de Laplace ?. Antes de dar una respuesta parcial a esta pregunta debemos dar algunas definiciones.


está definida y es continua en todo
, salvo en un finito de
, para
- Para cada los límites :


existen. Note que, solamente uno de estos límites es pertinente si es uno de los extremos de
.

En general, el requisito de que estos límites sean finitos en todos los puntos
implica que las únicas discontinuidades de
son discontinuidades de salto, del tipo que aparecen en la figura



Intuitivamente podríamos pensar que las funciones continuas a trozos son casi contínuas o que no son demasiado discontínuas.
Otra de las ideas importantes en el estudio de la existencia de la transformada de Laplace es que entendemos porqué una función no crezca demasiado rápido.
FUNCIONES DE ORDEN EXPONENCIAL







para
.

Intuitivamente esto significa que la función
esta por debajo de una función exponencial, como se muestra en la figura.


Observación: algunas veces, para verificar que una función
es de orden exponencial, conviene calcular el siguiente límite:


para algún valor de
. Si
es finito, entonces
puede ser cualquier número mayor que
(y este determina
). Por otro lado, si
,
no es de orden exponencial.







Ejemplo
Compruebe que
es de orden exponencial.

EXISTENCIA DE LA TRANSFORMADA
Sea

una función continua a trozos y de orden exponencial, entonces la transformada de Laplace de
existe. Es decir, existe un número
tal que
existe para
.







Demostración
Por ser
de orden exponencial existen números no negativos
,
y
tales que
, para
. Así que:






![]() | ![]() | ![]() |
![]() | ![]() |
La primera integral

es una integral definida, por tanto existe. Para la segunda integral note que
![]() | ![]() | ![]() |
![]() | ![]() | |
![]() | ![]() | |
![]() | ![]() |
Ahora, como

siempre y cuando
, tenemos que la integral


existe y con ello la transformada.
No hay comentarios:
Publicar un comentario