Definición 1.1 (Transformada integral) La transformada integral
respecto el núcleo
en el intervalo
de la función
se define de la forma
![$\displaystyle \bar{F}(s) = \mathcal{I} \big[ f(x) \big] = \int_a^b\!\!f(x) K(s, x) \ensuremath{\mathrm{d}x} . $](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sf0O0SAx41KUxyGYqDIF0Titlpl0HwaBynz2DMN075a-areswQCrdgB3I5vapkvtnWvxZYpFszpLy6RKJzVsFgNXFrt2cO_NH4kzBMddPMHTgugP1JPNNE=s0-d)
Donde
es la variable transformada.
Donde
El operador de transformación
es lineal, así como el operación de transformación inversa
.
No hay comentarios:
Publicar un comentario